学术讲座-Trace Lasso Regularization for Adaptive Sparse Canonical Correlation Analysis with Applications
举办单位:信息科学与工程学院
讲座题目 | Trace Lasso Regularization for Adaptive Sparse Canonical Correlation Analysis with Applications | ||||
讲 座 人 | 彭拯 | 讲座人 职称、职务 | 教授 | 主持人 | 许弘雷 |
讲座类型 | R自然科学 | 讲座对象 | 全校师生 | 举办时间 | 2018/1/12 13:00 |
□社会科学 | |||||
举办地点 | 福建省汽车电子与电驱动技术重点实验室会议室 | ||||
讲 座 人 简 介 | 彭拯,现为福州大学数学与计算机科学学院教授,博士生导师,当前主持国家自然科学基金一项。 June 2008: Ph. D., Department of Mathematics, Shanghai University | ||||
讲座 主要内容 | By adapting the trace Lasso and Lasso regularization, an adaptive sparse version of CCA (adaptive SCCA for short) is proposed. The adaptive SCCA reduces the instability of the estimator when covariates are highly correlated, and thus improves their interpretation. The adaptive SCCA model is reformulated to an orthogonality constrained optimization problem, and an effective splitting method is proposed for solving the resulting problem, The performance of the proposed SCCA model is compared with other sparse CCA techniques in different simulation settings, and the validity is also illustrated on the real genomic data sets. |